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POREWARD 

Jack Edmonds, attached to our CNR Logistics Project 

in 1962-63 on leave from the National Bureau of Standards, 

organized and managed the informal conference here reported. 

While serving as secretary of our weekly seminar on Combinatorial 

Problems and Games, he found many mathematicians willing to come 

to speak on Graphs and related topics. So he suggested that we 

invite them at one time in one large three-day symposium session. 

The results summarized in this Report demonstrate his effective 

execution of his own felicitous plan. 

This Report is a simple record of the Conference, mainly 

via author»s abstracts of the paper presented. Further information 

about these papers (or of papers presented in our weekly seminar) 

can he obtained only from the individual authors in whatever form 

of publication these authors may undertake. 

A. W. Tucker 
Director, ONR Logistics Project 
Department of Mathematics 
Princeton University 



Program of the 
C3RAPH AND COMBINATORICS CONFERENCE 

Princeton University- 
May 16-18, 1963 

Prelude. 9:30 a.m., Thursday 

9:30  Esther Seiden, Michigan State University. Some recent graph 
theory in Russia. 

10:00  A. W. Tucker, Princeton University, Principal ptxufcal ttnnaförms 
of square matrices. 

10:to  W. T. Tutte, University of Waterloo, Canada. How to draw a graph. 

First Session. 1:00 p.m., Thursday. Chairman: A. W. Tucker, 
Princeton University. 

1:10   Oystein Ore, Yale University. On a graph theorem by Dirac. 

1:50  Esther Seiden, Michigan State University. Strongly regular 
graphs and finite hyperbolic planes. 

2:30  John Mather, Harvard University and N. B. S. The planar immer- 
sions of a graph. 

3:10  Richard Karp, I. B. M. Research Center. A combinatorial 
property of sets of equivalence relations. 

3:50  Contributions from the floor. 

Second Session. 9:00 a.m., Friday, Chairman: A. J. Hoffman, 
I. B. M. Research Center. 

9:00   J. B. Kruskal, Bell Telephone Labs. Infinite sequences of 
trees• 

9:U0   Chong-Yun Chao, I. B. M. Research Center. On the groups of 
automorphisms of graphs. 

10:20  D. B. Netherwood, U. S. Air Force. Ulam's problem on the 
isomorphism of graphs. 

11:00  Contributions from the floor. 

Third Session. 2:00 p.m., Friday. 
Chairman: R. Z. Norman, University of California, (Berkeley), 
and Dartmouth College 

2:00-  Gian-Carlo Rota, Massachusetts Institute of Technology, 
Combinatorial Applications of the Hall-Mob ius-We isner inversion 
formula. 

(continued) 



2:ltf)   John Riordan, Bell Telephone Labs. Inverse relations and 
combinatorial identities. 

3:20  R. W. Robinson, Dartmouth College, Generating functions vith 
cycle index and the number of block graphs. 

ij-'.OO   Contributions from the floor. 

Fourth Session. 9*00 a.m., Saturday. Chairman: H. W. Kuhn, 
Princeton University. 

9:00   W. T. Tutte, University of Waterloo, Canada. The enumeration 
of planar graphs. 

9:U0   T. C. Hu, I. B. M., Research Center. Synthesis of a communication 
network. 

10:20  Victor Klee, University of Washington, (Seattle). The number 
of vertices in a convex polytope. 

11:00  Contributions from the floor. 

Fifth Session. 1:00 p.m., Saturday 
Chairman: S. Sherman, Wayne State University 

1:00  A. L. Dulmage and N. S. Mendelsohn, University of Manitoba, 
Canada. The canonical decomposition of bipartite graphs with 
application to matrix inversion and the optimum assignment 
problem. 

1:1*0   I. Heller, Stanford University, Representation and classification 
of unimodular sets. 

2:20   Jack Edmonds, Princeton University and National Bureau of 
Standards. Maximum degree-constrained subgraphs. 

3:00   Contributions from the floor. 

(Talks by G. B. Danti ..g and M. H. McAndrew, scheduled for the 
program, were not presented—J. E«) 
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ABSTRACTS 

(of the talks and a few of the contributions from the floor) 
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Some Recent Graph Theory in Russia 

Esther Seiden 
Michigan State University 

Vitaver, L. M. 
Determination of minimal 
coloring of a graph by means Graph Theory 
of Boolean powers of the incidence 
matrix (Russian) 
Dokl, Akad. Nauk SSSR Ikl 
(1963), 758-759 

Let G be an unoriented graph without loops and parallel edges. 

Let (f be an oriented graph obtained from G by some orientation of 

all its edges. Let 7(G) denote the chromatic number of A and K(G) 

the biggest of the integers m such that for an arbitrary orientation 

the corresponding graph (? has at least one path of length m. The 

author proves two theorems: Theorem 1. 7(G) ■ k(G) + 1. Theorem 2. 

7(G) is the smallest number a + 1 such that the a + 1 Boolean 

power of the incidence matrix of some oriented graph is equal to zero. 

1^75^3 
Vitaver, L. M. 
On a vertex-edge graph function. 
(Russian) Graph Theory 
Dokl. Akad. Nauk SSSR 1^5 
(1962), 2U8-251 
Rev: E. Seiden (E. Lansing, Mich.) 

The author uses a method analogous to that introduced by A. A. Zykov 

(previous review) and proves the following. Let L  be graph obtained 

from L by removing an edge but retaining the vertices. L  is a graph 

obtained from L by removing an edge and replacing the vertices by a 

vertex which is adjacent to all the vertices to which one and only one 

of the removed vertices was adjacent. Let \L,  a, 1 be the generations 

of a ring, say k. Let <fr(L) be a vertex-edge function satisfying the 

equations: <KL) ■ O^I^) + ^(L ) + 1, 4(E ) ■ 0 where EQ is an 

empty graph of n vertices. Then <KL) can be characterized by two 
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! 

(au-^a) (am)m nn (OHI+I) - o 

(d2 - 1) un+1(a+u+l) = O where m, n = 0,1,2,., 

138289 
Zykov, A. A. 
Edge vertex functions and the 
distributive properties of graphs. 
(Russian) Graph Theory 
Dokl. Akad. Nauk SSSR 1J2 
(I96I), 787-790 
Rev: E. Seiden (E. Lansing, Mich.) 

Let L be an arbitrary graph. Let L  denote the graph obtained 

from L by removing one edge, say, ab but retaining the vertices a 

and b. Let Lß be graph obtained from L by removing an edge and 

replacing the vertices by one vertex which is adjacent to all the vertices 

to which at least one of the removed vertices vas adjacent. Let L  be 

graph obtained from L by removing an edge and replacing the vertices 

by one vertex adjacent to all the vertices to which both removed vertices 

were adjacent. Let k be a free ring whose generaters are a, ß, a and 

e (unity). Let <I>(L) be an edge-vertex function defined by the equations 

<KD - <*Klfc) + ß<fr(Lß) + a<KLa) + e 

4>(En) - 0, n ■ 0,1,2,... 

where E  is an empty graph of n vertices. 

The author shows that 4>(L) can be characterized by the following six 

conditions 

(a - e) a « 0 

a(a + ß - e) ■ 0 

ßa a 0 

(aß - ßa)cP(a + ß) = 0 

(a - e) aßn+1(a + ß) - 0 

aßn+1(a + ß) n 0 where n = 0,1,2,... 

The proof is Ingenious and elegant. 



ABSTRACT 

A. W. TOCKER, Princeton University. Principal pivotal transforms of 

square matrices. 

The class of at most (2n)l matrices "combinatorially equivalent" 

to a square matrix A of order n contains an important equivalence 

subclass of at most 2n matrices B , where each B is a 'pivotal 

transform" of A by a nonsingular principal square submatrix of A . 

[For above quoted terminology see author's paper in Bellman and Hall, 

eds., COMBINATORIAL ANALYSIS, A.M.S. I960, pp. 129-lUO.]  If A 

is nonsingular, A"  belongs to the subclass. If A has all its 

principal minors (subdeterminants) positive, so has each B . If A 

has all its principal minors nonnegative, so has each B . If A is 

skew-symmetric, so is each B , and there exists some B possessing 

a nonnegative row (and corresponding nonpositive column). This last 

yields direct proofs of the minlmax theorem for symmetric games and 

of the author»s "skew-symmetric matrix theorem" [see Kuhn and flicker, 

eds., LINEAR INEQUALITIES AND RELATED SYST5M3 (Annals Study 3d), 

Princeton 1956, p. 13]. 

A. W. T. 



How to Draw a Graph 

W. T. Tutte 

University of Waterloo, Ontario 

Suppose G is a 3-connected graph known to be planar. Then its 

"peripheral" polygons, those which must bound faces in any planar 

representation, are determined combinatorically. 

A particular planar representation of G can be obtained as follows. 

The vertices of one peripheral polygon are mapped, in order, onto the 

vertices of a convex polygon Q in the plane« Every other vertex is to 

be mapped onto the centroid of the representative points of its neighbours. 

These conditions determine a "barycentric representation" of G. Edges 

are represented by straight segments.  It can be shown that distinct 

vertices are mapped onto distinct points, that no internal point of a 

representative segment belongs to another, and that the diagram dissects 

Q into convex polygons, each having a boundary corresponding to a peripheral 

polygon of G. 



On a graph theorem by Dirac 

0. Ore 
Yale 

Dirac (Proc. London Math. Soc. v. 2 (1951)) has proved a 

theorem about circuits in graphs which is useful for many questions 

in graph theory: Let G be a finite inseparable graph with single 

edges. Then either G has a Hamilton circuit or the length c of 

the largest circuit satisfies the condition c ^ 2p  vhere p  is the 

minimal local degree« In this paper certain sharper forms of the theorem 

are deduced* One is the following: 

cj(po- 2)(co - 2) + 5 

where c  is the smallest length of a circuit in G. 

In another direction: All graphs in which c « 2p are de- 

termined. These are very special and when they are omitted one has 

c ^ 2P0 + ! *or all other graphs. 



On a Method of Construction 
of 

Strongly Regular Graphs and Partial Bolyai-Lobuchevsky Planes 

Ester Seiden 
Michigan State University 

Definition 1. (Bose in a paper submitted to the P. J. of Mth.) A graph 

is strongly regular if 1) each vertex is Joined to the same number of 

vertices, 2) two vertices which are joined are both joined to the same 

number of vertices, 3) two vertices which are not joined are both joined 

to the same number of vertices. 

Definition 2. (Graves Mathematical Monthly I962) A plane is said to be 

a partial Bolyai-Lobuchevsky plane if it satisfies the following axioms: 

Al. The plane P is a finite collection of elements called 

points. 

A2. There are certain distinguished subsets of the plane P 

called lines. 

A3. There are at least two points on each line. 

Ak,    Two distinct points lie on one and only one line. 

A5. The plane P contains at least four points, no three of 

which lie on a line. 

A6. If a subset of P contains three points not on a line and 

contains all tfce lines through any pair of its points then 

that subset contains all the points of P. 

A7. Through each point x not on a line I   there pass at least 

two lines not meeting 1. 

Graves gives an example of B-L plane consisting of 13 points and 26 lines, 

three points on each line. He raises the question: "It would be inter- 

esting to know methods for constructing additional examples of finite B-L 

planes and to learn the limitations on the number of points on a line and 

number of lines through a point. 

It is shown now that one can construct strongly regular graphs with the 

following specifications: 
(Co^'c*; 



2. 

Category 1. The graph consists of 2 -1 vertices. Each vertex 
Pw 1 

is joined to 2 " -2 other vertices. Two vertices 
?n P 

which are joined are both Joined to 2   -3 vertices 

and two vertices which are unjoined are both joined to 

2   -1 vertices. 

■>2n 
Category 2. The graph consists again of 2 -1 vertices. Each 

vertex is joined to 2    other vertices. Two vertices 
p»i p 

which are joined are both joined to 2 "  vertices. 

Two vertices which are unjoined are both joined to 

2    vertices. 

The duals of both categories of lines are also strongly regular graphs. In 

addition it is shown that the dual of the second category of lines are B-L 
Pn 1  r\   1 9T\ r\   1 

planes consisting of 2   -2   points and 2 -1 lines and 2 "  points 

on each line. Further properties of these planes will be investigated. The 

method of construction of the strongly regular graphs and B-L planes are 

geometrical. 



The Planar Immersions of a Graph 

John Mather 

Harvard 

Suppose X and Y are topological spaces (simplicial complexes, 

differential manifolds) and f : X —> Y is a continuous (piecewise 

linear, differentiable) map. If each point x € X has a neighborhood 

N such that f |N is a homeomorphism (piecewise linear homeomorphism, 

diffeomorphism of N onto f(N) we call f an immersion. If h is 

a homotopy of X into Y (i.e., a map of X X I into Y) we define 

h1 : X X I > Y X I by h^x^t) - (h(x,t),t). We say h is a regular 

homotopy if h is an immersion. If f and g are two immersions of 

X in Y we say f and g are equivalent if there is a regular homo- 

topy h such that f = h(«,0) and g = h(«,l). 

The problem of classifying the immersions of X in Y under 

regular homotopy has been treated in the differential case by Smale and 

Hirsch who reduced it to the problem of classifying sections in a fiber 

bundle under homotopy equivalence. The simplest non-trivial case of the 

combinatorial form of the problem is the classification of Immersions of 

graphs in the plane. Each immersion of a graph G in the plane defines 

a cyclic order on the edges of G meeting a given vertex. The classifi- 

cation theorem states that, for given cyclic orders, the equivalence 

classes of imnersions are in 1-1 correspondence with the elements of 

the first cohomology group of G. 

The methods used to prove this theorem are combinatorial ones. 

It appears, however, that if the classification problem is to be solved 

in higher dimensions methods analogous, those of Smale and Hirsch should 

be used. 



A Combinatorial Property of Sets of Equivalence Relations 

by 

Richard M. Karp 

I.B.M. 

ABSTRACT: Let f be a mapping of an n-element set S into 

(0,l,...,p-l}r, taking an element s into (x^s),.. .,x (s)). Each 

set MC {l>.««,r) induces an equivalence relation EM on S: sJ2 s_ iff 

xAs^) m x (s2) for every j e M. A set £j*  (E-^E^...^) of equiva- 

lence relations on S is called (r^p)-admissible iff there is a mapping 

f of the type described such that each element E, is Ew  for some 
i i     \ 

set M.. A simple characterization of (r,p)-admissible sets is given 
1 

i r 
for the case n = p , and a general procedure for testing (r,p)-admissi- 

bility is given. These results are based on a certain matrix identity for 

additive set functions. The property of (r,p)-admissibility is of interest 

in connection with a problem of sequential machine state assignment. 
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INFINITE SEQUENCES OF FINITE TREES 
Joseph Kruskal 

Bell Telephone Laboratories 

A set X, partially ordered by <> is said to be well-partially- 

ordered (wpo) if X contains neither an infinite strictly descending 

sequence nor an infinite set of non-comparable elements. Simple example: 

pairs (i,j) of positive integers where ^ means inequality for both 

components. Let T be the set of all finite trees. We say t, £ tp 

if t, is homeomorphically embeddable in tp. Simple example: 

o o   g o^°~° ° ° • T is obviously po. Conjecture by Vazsonyi: 

T is wpo. Theorem: Vazsonyi is right. In other words, there is no 

infinite set of (finite) trees, no one of which is embeddable in any 

other. (The condition on strictly descending sequences is trivial.) 

However it is quite easy to construct arbitrarily large finite sets of 

this sort. Example: Let t. be • •*.      _/. where each end has 

6"'       ^6 
i branches and the middle has length 100-i. Then t.j,...,tqg cannot 

be embedded in each other. The theorem says we cannot create an infinite 

set like this. 
i 

If we permit graphs with loops, it is easy to construct infinite 

noncomparable sets. Example: let g  be a circular necklace of n 

diamonds o'**   o   c ... o ° (connect to other end). Then -o o o 
g2>6^«** &** no,fc embeddable in each other. 
Conjecture: Finite graphs of degree <* 3 are wpo. This seems extremely 

difficult, and I have not heard of any progress on it. 

Another difficult conjecture, which has stimulated some lovely 

and difficult results by C. Nash-Williams in England (not yet published), 

is this: Conjecture: The set of infinite trees is well-quasi-ordered. 

(For infinite trees, t. ^ tg £ t1 does not imply t, * tp. Thus they 

are only quasi-ordered, not partially-ordered.) Unlike finite trees, 

infinite trees show no obvious reason for satisfying the descending chain 

condition, though the conjecture requires this. This lack creates great 

difficulty. 

Though the proof that T is wpo is complicated, I will attempt 

! 

to describe the underlying conceptual basis, while avoiding details. 



C. Y. Chao 

IBM 

On the groups of automorphisms of graphs 

Let X he a finite and unoriented graph, and G(X) he the group 

of automorphisms of X, i.e., each element a   of G(X) is a per- 

mutation of the vertices of X and a preserves the adjacent edges. 

Clearly, every graph has a group of automorphisms. But not every given 

permutation group G of n letters can have a graph of n vertices 

whose group of automorphisms is G. Here some nonexi^tence theorems 

are presented. Also, for any given transitive permutation group H of 

degree n, an algorithm is described for constructing all graphs each 

of vhose group of automorphisms contains H as a subgroup. 



A Solution to Ulara's First Problem in Algebra 

D. B. Netherwood 

Air Force 

mam's first problem in Algebra in his Collection of Mathematical 

Problems (Interscience, i960) is: 

"Suppose that in two sets A and B, each of n elements, there is 

defined a distance function p for every pair of distinct points, with 

values either 1 or 2, and p(p,p) ■ 0. Assume that for every subset 

of n - 1 points of A there exists an isometric system of n - 1 

points of B, and that the number of distinct subsets isometric to any 

given subset of n - 1 points is the same in A and in B. Are A 

and B isometric?" 

A stronger related assertion is proved. If notation G.  is used to 

denote a subgraph formed by deletion of one point of a graph G, the 

theorem may be stated as follows: 

"If for every subgraph G. of a graph G there exists an isomorphic 

subgraph of a graph G and conversely, then for graphs of more than 

three points, G and G* are isomorphic." 

Extensions of the theory to special types of graphs, such as directed 

graphs and weighted graphs are briefly discussed. 



2. 

A Revision to Netherwood's Paper 

Dr. R. Z. Norman has pointed out that the proof of the theorem 

in "A Solution to mam's First Problem in Algebra" would be improved 

by explicit demonstration that for any C(r) there exists a Cf(rf). 

This has been done in the revised step 2 below. The change permits 

a simpler presentation of the remainder of the proof, which I would 

like to offer here. 
Douglas B. Netherwood 
Lt. Colonel, USAF 

*      *      *      *       * 

(This is for the benefit of the conference attendees, who have copies 
of the paper in its original form.) 

2. Assume there are at least 3 points a,b,c in C(r). Place a mark 

on r, such as a ring around it. under ii , G is transformed into 
a 

G1. The point labeled a becomes a', and it remains adjacent to the 

ringed point of minimal degree (otherwise the minimal degree in G 

would be less than in G). In general, any \i.    for i € C(r) maps 

i  > i  and preserves adjacency of i1 to the ringed point; Z \i± 

defines Cf(rf). 

3. We will call the ringed point r* in G*, but we do not claim to 

have established G„ 5 G I. It will be shown that there exists an 
r   r 

isomorphism cp(G) » G1 such that i —> i1 for all i e C, i* € Cf 

and r —> r ;    from this it can be inferred that G 8 G* .. 
r   r* 

h.    By identity, G     5 G ,    where x,y are any sets of points. That 
xy   yx 

is, the order of deletion is irrelevant. Let cp  be the operator which a 
maps    Ga —> G    ,.    Under   q>     either    <p (b) » b1    or   cp (b) » c1,    since a a a a a 
they are adjacent to point   r1    of minimal degree.    If   cp (b) * cf    we 

a 

would not have G .  identical to G. j therefore cp (b) ■ b1 and in 

general cpj(i) = i' for all i,j. Hence 0^ « 0^,^,, GiJk 3 o\ty^9, 

etc. 
(continued) 
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3. 

5. cp . (r) ■ r1, since r and r' are the only isolates, up to 

duplication, which as no effect on the forming of subgraphs. We will 

call cp .   (or cp. .     ) the basic isomorphism. 
8.DC      l, j, •. ., n     —■■.— ___—_—.—— 

6. The basic isomorphism can be extended to isomorphism G • G*. cp - 

is a reduction of cp ; hence, cp  is an extension of cp -  which maps 

b  > b* and c  > c1 with preservation of their adjacencies. The 

generalization is that cp.  maps i —-> i1 and J —> J1 with preser- 

vation of all adjacencies including the adjacency status between i and J. 

7. The union of all extensions cp.  of the basic isomorphism is isomorphism 

(G) 2 G , since it is a 1-to-l mapping with preservation of all point 

adjacencies. 

8. The case where C(r) has 2 points is dealt with in the same manner 

as the general case except that preservation of the adjacency status 

between a and b is guaranteed by the Lemma, in that the point degrees 

do not change. 

9. Where dg(r) = 1, a path can be traced from r to the nearest point 

s of degree > 3.  (if no such point occurs, isomorphism between G and 

G  is clear.) The r-s path can be used as r was used above. 

10. If dg(r) = 0, Gp 3 G* t, and graphs G, G* are formed by addition 

of an isolated point. 

QED 
I 
i 

f 
: 

i 



Combinatorial Applications of the Hall-Mbbius-Weisner inversion formula 

Gian-Carlo Rota 

M.I.T. 

It is shown by examples that the inversion formula on a partially 

ordered set, introduced by L. We isner and Ph. Hall in terms of a 

(generalized) Möbius function, is a powerful unifying principle for a 

great variety of problems of ennumeration. The author has completed 

(in collaboration with Roberto Frucht of Valparaiso, Chile) the Möbius 

function on the lattice of partitions of a finite set; as applications 

of the corresponding inversion formula one obtains very simple proofs 

of old and new enumeration problems involving "connected" objects (e.g. 

Spitzer 's formula of probability theory). Various results are given which 

simplify the computation of MÖbius functions, and which have applications 

to the computation of chromatic polynomials of maps. Finally, stronger 

versions, using suitable Möbius functions, ere given of the Polya-de 

Bruijn counting theorems. These are strong enough to count equivalence 

classes of functions with restricted ranges, (e.g. onto functions). 



INVERSE RELATIONS AND COMBINATORIAL IDENTITIES 

by 
John Riordan 

Bell Telephone Laboratories, Incorporated 
Murray Hill, Nev Jersey 

The inverse relations in question are typified by 

yn = (x+l)
a - Z(£)xk 

x11 = (y-l)n = 2(-l)n+k(°)xk 

or in a functional form more suggestive of the Jacobian inj-unction "always 

invert", by 

an(x) = (l+x)
n = S(£)xk 

xn = K-ir^a^x). 

Although relations of this sort occur frequently in combinatorial 

analysis in a variety of contexts, their interest in the present study 

lay in the hope that they might provide an organizing lattice for the 

combinatorial identities with vhich they are associated. This hope has 

not been realized. The shoe is on the other foot: The combinatorial 

identities serve to generate inverse relations in bewildering profusion. 

Only a small part of this expanse is surveyed in this paper. 

First, the relations mentioned above are examined; they have many con- 

sequences, some surprising. Then what has been learned is used on 

Stirling numbers, which offer further possibilities. Further sections 

consider Chebyshev and Legendre polynomials, and a variety of incidental 

results• 

/ 



Generating Functions with Cycle Indices and Block Graphs 

Robert W. Robinson 

Dartmouth 

The basic tool of the enumeration methods employed in this 

paper is the cycle index. Whereas traditional applications of the Polya 

Haupsatz rely heavily on content indicating generating functions, -we 

deal only with sums of cycle indices. The basic enumeration theorem is 

concerned with counting maps, or configurations, from a set A into a 

figure set F (whose elements f. are called figures). If G(A) is 

a permutation group on A it induces naturally an isomorphic group of 

permutations on the set of configurations, which in turn partitions the 

configurations into a set  ^frof equivalence classes. Each f. € F 

is taken to be a set of objects with an automorphism group C-(f.), with 

its cycle index Z(G(f.)). One can then define in a natural way the 

automorphism group of a configuration in terms of G(A) and the auto- 

morphism groups of the figures in its image. We define the cycle index 

Z(q>) of cp € trt to be the cycle index of the automorphism group of a 

representative of $. For single variables a composition of cycle types 

is defined by S [Sk] = S , and composition is then defined to be 

right and left distributive over addition and multiplication of the 

polynomials that represent cycle types and cycle indices. The main 

theorem states that 

Z_  Z(q>) -Z(0(A)) \Z      Z(0(f.)")\ 

Using this theorem, one can extend the known method of enumerating 

graphs whose blocks are given to allow the enumeration of the cycle 

indices of such graphs, in terms of the sum of the cycle indices of the 

given blocks. Further, the sum of the cycle indices of the connected 

graphs is available through a cycle index version of the Riddell formula. 

Let C  be the cycle index sum for all u-point connected graphs, B 

that for all u-point block graphs, and L  that for all u-point 

connected graphs whose blocks have less than u points. Then C - B + L . 
u   u   u 

C  and L  can be found if the cycle index sum of blocks with less 

than u points has been found; thus block graphs can be enumerated 

recursively. 



The Enumeration of Planar Maps 

W. T. Tutte 
University of Waterloo, Ontario 

This talk is based on a series of four papers on enumeration 

appearing recently in the Canadian Journal of Mathematics. The planar 

maps concerned are "rooted" in the sense that one edge is chosen as the 

"root", and a positive sense of description and right and left sides are 

specified for it. Typical results are the following. 

(i) The number of non-separable rooted maps of n edges is 

3*1-3?* 
nl (2n-l)l 

(ii) The number C  of 3-connected rooted maps of n edges 

is given by 

Cn = 2(-l)
n + Rn-1    (n > k) 

where the integer R  is defined recursively by 

j. Ro " ° ' 
SQ = 27n

2 + 9n - 2 , 

S E . +2S , R =Si^4 • n n-1   n-1 n   (nS)2 

The original aim of the investigation was to find, at least 

asymptotically, the average number of ^-colourings in cubic maps with 

n regions. An account is given of some small progress towards this 

goal, and of the emergence of by-products such as (i) and (ii) above. 



Synthesis of a Communication Network 

(by R. E. Gomory and T. C. Hu) 

IBM 

A communication network is a set of nodes connected by arcs. 

Every arc has associated with it a non-negative number called the branch 

capacity which indicates the maxiium amount of flow that can pass through 

the arc. A communication network must have large enough branch capacities 

such that all message requirements (which can be regarded as flows of 

different commodities) can reach their destinations simultaneously. In 

general, these requirements vary with time. The present talk gives 

algorithms for ndn-cost synthesis of a communication network which is able 

to handle simultaneous flows of all time periods. 



A Combinatorial Analogue of Poincare's Duality Theorem 

Victor Klee 
University of Washington and 

Boeing Scientific Research Lab. 

This result, like Poincare's, applies to combinatorial n-manifolds 

M11, but instead of their Betti numbers ß (if1)    it concerns the numbers 
of f (M1) of their p-simplices. A combinatorial n-manifold is a 

simplicial n-complex if1   such that for each p-simplex o^ e if1,    the 
linked complex LicPflf1)   has the same homology groups as an (n-p-1)- 

sphere; analogously, an Eulerian n-manifold is defined here by the 

condition that L(c"P,Mn) always has the same Euler characteristic as 

an (n-p-l)-sphere. Let En (resp. Cn) denote the class of all 

Eulerian (resp. orientable combinatorial) n-manifolds, and for each 

MSEa let ß(M) = (ß^M^ß^Mh.-./ß^M)) and 

f(M)~= ltJLH)9t2(LH),...,tnlH)),    Poincare^s theorem (ß (M) = ßn.p(M)) 

implies that the linear span of the set ß(Cn) C RI1+  is && 
Un+2)/2>-dimensional subspace of Rn+ , and it exhibits a convenient 

basis for the subspace. The same conclusion is established here for 

f(E ), where the convenient basis involves binomial coefficients in a 
** 6   7 

simple way. For example, bases for the linear spans of f(E ) C R  a*1* 

f(E7) CR8 are as follows: 

(f6:(2,0,0,0,0,0,0),(1,3,2,0,0,0,0),(0,1,^,5,2,0,0),(0,0,1,5,9,7,2); 

CJ:(1,1,0,0,0,0,0,0),(0,1,2,1,0,0,0,0), (0,0,1,3,3A,0,0),(0,0,0,1,U,6A,1), 

(Note that (1,3,2) = (1,2,1) + (0,1,1), 

(1,1^,5,2) = (1,3,3,1) + (0,1,2,1), etc.) 

Having a convenient basis for the linear span of f(En) leads to a 

useful characterization of the linear relations which must subsist among 

the numbers f (M) for all Meg11. It turns out that when n « 2u - 1 s 
(whence X(M) = 0 for all M e En) the numbers f^M^f^M),. ..,fu(M) 

can be expressed linearly in terms of f ,(M),.. .,f.(M),f (M) (the 

expressions being valid for all M 6En), while when n = 2u - 2 the 

numbers f (M),f -(M),...,f ,(M) admit linear expressions in terms 

of fu-2(M),...,fQ(M),X(M). 

The proofs are purely combinatorial involving neither subdivision 

nor homology. 



ON THE NUMBER OF VERTICES OF A CONVEX POLYTOPE 

Victor Klee 
University of Washington and 
Boeing Scientific Research Lab. 

As is veil known, the theory of linear inequalities is closely 

related to the study of convex polytopes. If the bounded subset P of 

R  has nonempty interior and is determined by i linear inequalities in 

d variables, then P is a d-dimensional convex polytope (here called a 

d-polytope) which may have as many as i faces of dimension d-1, and 

the vertices of this polytope are exactly the basic solutions of the system 

of inequalities. Thus to obtain an upper estimate of the size of the 

computation problem which must be faced in solving a system of linear in- 

equalities, it suffices to find an upper bound for the number fQ(P) of 

vertices of a d-polytope P which has a given number f
d_;i(p) of (d-l)- 

faces. A weak bound of this sort was found by Saaty, and several authors 

have posed the problem of finding a sharp estimate. Dantzig mentions the 

closely related probelm (arising naturally in connection with the simplex 

metnod for linear programming) of determining those convex 3ets which have 

the maximum number of extreme points, among all sets which are determined 

by a system of m linear equations in n nonnegative variables. 

Our main concern here is with the conjectured inequality 

•   .<$±£\\    ft   - <i±sS\ 

and its dual equivalent. 

\T/\  /fd-i- XT/) 

\ fd-i 

\ 
/ 

/' 

(i*)  *, , < 

It - «jiNN   it -/ä±2\\ 

d'1    \f  -    a      /     W  .  d        / 
K° / \ 

where <Yj> denotes the greatest integer < k and f  denotes the 

number of s-faces of a d-polytope. The validity of these inequalities 

for all d-polytopes was conjectured by Jacobs and Schell and by Gale, 

who observed that the proposed upper bound in (l*) is attained by the 

neighborly d-polytopes (studied by Bruckner, Caratheodory, Gale, and 
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Motzkin) having the remarkable property that for all m £ ''d/2/, each 

m vertices determine an (m-l)-face. Dually, equality in (l) is attained 

for d-polytopes such that for all m £ <d/2/, e&ch m (d-l)-faces 

intersect in a (d-m)-face. 

The assertions (l) and (l*) are trivial for d ^ 2, where equality 

always holds. For d = 3 they become f < 2f2 - k    and f2 % 2fQ - k, 
facts known to Euler. Saaty's bound was sharp for d -g k.   The inequal- 
ities (l) and (1*) were established by Fieldhouse for all d £ 6, and by Gale 

for arbitrary d when f, - « d + 2 or d + 3« Thus Gale shows that 

(l) holds whenever f, .. is small enough. We show here that it holds 
CL--I. p 

whenever f, , is large enough, specifically when f. ., ^ (d/2) - 1. 

This covers the case d < 6 and thus includes the result of Fieldhouse, 

but it does rot include Gale's theorem when d > 6 and does not fully 

settle the conjecture. 

Under the restriction f :> (d/2)2 - 1, the inequality (l*) is 

established not only for d-polytopes, but also for an arbitrary Eulerian 

(d-l)-manifold of Euler characteristic 1 - (-1) , where an Euler ian n- 

manifold is a finite simplicial n-complex M11 such that for each s-simplex 

0 e M , the linked complex L(cr ,^) has the same Euler characteristic 

1 - (-1)    as an (n-s-1)-sphere. The principal tool is a formula 

applying to all Eulerian (d-l)-manifolds, which expresses f. , linearly d-l 
in terms of f>d/2\ ■,> f<a/2x o> •••>**[>* >    and the Euler characteristic 

X. With the aid of similar'formulae for f* 2> • •*'*<'d/2
N '.    we are ***** 

to show that whenever f  is sufficiently large, then among all of the 
o j 

d-polytopes (or Eulerian (d-1-manifolds with X ■ 1 - (-1) ) which have 

f  vertices, the neighborly d-polytopes maximize not only 

also all of the other functions f(l<s<d-2). s  - - 
*d-i *ut 



The Canonical Decomposition of a Bipartite Graph vith Applications 

to Matrix Inversion and to the Optimal Assignment Problem 

A. L. Dulmage and N. S. Mendelsohn, Manitoba, Winnipeg 

1. The Canonical Decomposition 

If K is a bipartite graph with vertex sets S and T and 

if P C s and Q Q S then (P X Q) fl K denotes the subgraph of K 

vith vertex sets P and Q, such that (p,q) is an edge of (P X Q) 0 K 

if and only if p e P, q € Q and (p,q) is an edge of K. Let K be 

a bipartite graph in which there is a finite set of vertices which cover 

the edges. It has been shown, (l) (2), that the vertex sets S and T 

j may be uniquely partitioned, S = X_ + X~+ ... + X + S1 + Sg + ... + 

Sjj, + U, + U2 + ... + U , T = Yx + Y2 + ... + Y + Tx + T2 + ... + 

T. + V. + Vp + ... + V , p > 0, k > 0, q > 0, in such a way that the 

following results hold: 

(a) Each of the subgraphs (S. X T.) OK has exactly two 

minimum covers, namely (S., $) and ($, T,). Such subgraphs are called 

irreducible• 

(b) Each of the subgraphs (X. x Y.) fl K is connected and 

has exactly one minimum cover, namely (<l>, Y.). 

(c) Each of the subgraphs (U. x V ) D K is connected and 

has exactly one minimum cover, namely (U., 4>). 

The subgraphs in (b) and (c) are called minimal semi-irreducible. 

The subgraph which is the union of the subgraphs in (a), (b) and (c) is 

called the cere of K. 

(d) The subset U, + U0 + ... + U  of S and the subset N 12        q 
Y1 + Yg + •. • + Y + T-+ Tp + ... + T.  of T together constitute a 

minimum cover of K. The number of distinct minimum covers is between 
k k + 1 and 2 . There is a unique minimum cover if and only if k = 0. 

(e) An edge (s,t) of K is an edge of the core, if and only 

if (s,t) belongs to a maximum set of independent edges of K. 

(f) An edge (s,t) of K is not an edge of the core, if 

and only if s e some U. and t 6 some Y.; or s e some S  and 

t € some Y.; or s € some U. and t e some T ; or s € some £ 

and t € some T. with i > J. r A 
0 (Cc^\V^) 
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(g) An edge (s,t) of K Is not an edge of the core of K 

if and only if there exists a subset M of S and a subset N of T 

which together constitute a minimum cover of K, such that s € M and 

t € N. 

(h) the maximum number of independent edges ■ |s| ■ |T|, 

if and only if p = q. = 0. 

This canonical decomposition is a refinement of a decomposition 

given by 0. Ore in (  ). 

An algorithm for effecting the canonical decomposition is given 

in (5). 

2. The Inversion of Sparse Matrices 

F. Harary (7) has shown that the inversion of a sparse matrix 

can be simplified using a related directed graph. The inversion can 

often be further simplified using a related undirected bipartite graph. 

The directed graph D. of an n-square matrix A = (0L-) has 

vertex set V ■ (v,,v2,...,v ). The ordered pair (v^v.) is an edge of 

D. if and only if a  =^ 0. 

The undirected bipartite graph K. of A has vertex sets 

S = (s1,82,...,sn) and T = (t^tg,...,^). The pair (s^O is an 

edge of KA if and only if a  ^ 0. 

If a s^L 0 for i = 1,2, ...,n, then the strong components 

of D. correspond exactly to the irreducible components of the core of 

K.. If some Gt     = 0, however, then a strong component of D. may 

correspond to more than one irreducible component of the core of K.. 

When this occurs the inversion of the matrix A can be effected more 

efficiently by using the canonical decomposition of K. than by using 

D.. An example illustrating this is given in (U). 

The connection between bipartite and directed graphs is 

discussed in (3). 

3. Optimal Assignment 

Let A a (GJ*) be an n by n optimal assignment matrix 

and let the pair of vectors [x,y] be a dual solution. Le* the bipartite 



graph K   have vertex sets S = (s^Sg,. ••^sn) and T = (t^tg, ...,tn) 

and agree that (s.,t.) is an edge of K   if and only if x. + y. ■ 

a... Then the core C of K   is independent of the dual solution 
lj xy 
[x,y]. This core is called the core graph of the optimal assignment 

matrix A. An algorithm for finding a dual solution [x,y], and hence 

the core graph of A is given by H. W. Kuhn in (8). 

If A is an n by n optimal assignment matrix and if k is 

the number of irreducible components in the core graph of A then there 

is a construction which yields a unique k by k optimal assignment 

matrix A* with the following properties: 

(1) There is a one to one correspondence between dual solutions 

[x,y] of A and dual solutions [x*,y*] of A*. 

(2) A* has exactly one primal solution. In this way, the 

canonical decomposition of a bipartite graph is used to reduce the problem 

of finding all dual solutions of an optimal assignment problem to the 

problem of finding all dual solutions when there is only one primal 

solution. Moreover the dimension of the space of dual solutions of A 

is seen to be equal to the number of irreducible subgraphs in the core 

graph of A. 
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I. Heller: Representation and Classification of 

Unimodular Sets (preliminary report)* 

I. Introduction 

A set S in a free abelian group on n generators is called 

unimodular iff for every maximal independent subset S  of S the group 

generated by S  contains S (and hence equals the group generated by S). 

The practical significance of the concept lies partly in the 

characteristic feature that for a system of linear equations the property 

"all basic solutions are integral whenever an integral solutions exists" 

is equivalent to the property "the set of columns of the coefficient matrix 

is unimodular." 

Since every subset of a unimodular set is unimodular, the main 

interest is in maximal unimodular sets. Further, two sets of the same 

dimension are considered as equivalent when they aze mapped onto each other 

by some isomorphism of their groups. 

The simplest and well-known equivalence class of maximal unimodular 

sets shall be termed Class I. For dimension n a member of this class 

is the set {a.-a.} where a .a... ...a  are such that {a,-a 1 is 
i j        o' 1' '  n i o 

independent. Equivalent ly, a member of Class I is the set of edges of an 

n-simplex, interpreted as vectors in n-space, or also the set of peths of 

a tree, represented, say, by incidence columns characterizing the edges 

entering a given path. 

The concept of unimodular set has been studied under various equi- 

valent definitions by various authors, in recent years in particular by 

L. Auslander, A. Chouila-Houri, A. J. Hoffman, J. B. Kruskal, C. B. Tompkins, 

H. M. Trent, W. T. Tutte and present author. 

* Research carried out under National Science Foundation Grant 20035 a* 
Stanford University. 

(continued) 
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The major problem is to determine all equivalence classes of maximal 

unimodular sets for any given dimension. The solution of this problem is 

the object of the present report. 

II. Representation 

Conforming more directly to the method of representation is the 

following equivalent definition; A set S is unimodular iff every primitive 

relation in S is a multiple of a relation with coefficients +1; a 

relation is primitive when no proper subset of its elements satisfies a 

relation. 

A maximal unimodular set is represented by the set of 1-simplexes of 

a certain 2-dimensional simplicial complex K, in the factor group C /P . 
i 

r 12 Thereby,    C      is the r-chain group of   K    and   F    = dC      is the group of 

bounding 1-cycles.    Among the various equivalent ways of defining   K,    the 

following constructive method is chosen to suit the purpose of classification. 
| 

! . Definition. A complex K is unimodular iff K is the union of a set 
■■■'■■' 

of complexes 

such that 

(i) E. is the 2-section of an n.-simplex (n. > 1; i ■ 1,2,...,N). 

p. is a minimal standard (see below) decomposition of a closed 

orientable surface of genus   p. > 1 (J - 1,2,...,P). 

(ii)   Every two distinct   D,D     are connected by a unique path,    that 

is, a sequence of distinct 

D «DpD^...,^ = D' 

such that 

(continued) 
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2 
Di n Di+i = T (i = 1*2'-"'k-:L)- 

(iii) If D 0 D* = a1, a1 C a^ for each * of U1)« 

(iv) if the pair E , E  is a path, then one member of the pair r  s 
_2 is a o  . 

A decomposition of P is minimal when the number of a     is minimal 

(r = 0,1,2), standard when every hounding 1-cycle of 3 elements hounds 

seme cT of P. 

It is essential to note that distinct Simplexes in K may have the 

same "boundary, and hence in a minimal decomposition of P, a ■ 3> O.    = 

3(2p+l), a s 2(2p+l), as is readily visualized when using A. W. Tucker's 

surface symbols 

ala2 •" a2p+l \  a2 '•• a2p+l 

and connecting a fixed interior point with each vertex of the polygon. 

Condition (ii) "becomes equivalent to the statement "K is a tree," 
p 

when the D  are interpreted as nodes and the cr of their intersections 
p 

as arcs of a graph, whereby a a     common to more than two D  is intro- 

duced as an F. (this does not affect K). 

Conditions (ii) and (iii) imply in particular that two distinct D r 

have at most a |f in common, and (iv) implies that two distinct E. have 

at most a a  in common when both are of dimension > 2. 

Theorem. If K is a unimodular complex, then (a ) of K is a 

maximal unimodular set in C /F . Conversely, to each maximal unimodular 

set S in a free abelian group G, there is a unimodular complex K and 

an isomorphism q> : G <—> C /P  which maps S onto {<j ). 

III. Consequences 

Let S be a maximal unimodular set, K an associated unimodular 

(continued) 
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complex, and   p ■ E p..    Then 

(1) N < Up + P + 1}    P < p . 

(2) dim S = n = 2(p-N+l) + Z n± . 

(3) |S | -a1 =3(2p-N+l) +E   V1 . 

For a given dimension n,  |s| is largest when P = 0, hence N « 1, 

that is, K is the 2-section of an n-simplex. In this special case S is 

also represented in C /Z  (since on the simplex 3r ■ Z ),    whence it 

suffices to consider the 1-section of K, that is, the 1-dimensional graph, 

|S | is smallest when n. < 3 for all E. (note that (ii) excludes 

n. = 1 except for the case P = 0, N = 1). We have 

<4* ■ t  » 4a = 3<A-1) (n > 2). 
Note the merely linear increase of the Min and, hence the rapid growth of 

the range between the two extremes with increasing dimension. 

IV. Classification 

For a given dimension, a first classification is obtained by the 

number of elements in S.  For every number a  of the form (3)> satis- 

fying (2) and N < 5P + 1> there is a collection of families of classes 

of maximal unimodular sets of a  elements. An individual family in the 

collection (a ) is characterized by the set of numbers {n.,p.), and a 

subfamily thereof by the adjacency matrix A of the tree associated to K 

(up to a permutation of rows and columns of  A). Within the subfamily, a 

further distinction is given by the admissible mappings of D  onto the 
r 

nodes of the tree (up to mappings that leave genus and dimension at each 

node invariant). This 6et of classes thus appears characterized by the 

adjacency matrix bordered by the row {n.,p.}. Further distinction is 

based on certain neighbor relationships among the a     associated with arcs 

of the tree, namely those relationships that remain invariant under linear 

hcmecmorphlsms• 



Some Properties of Graphs with Multiple Edges 

D. R. Fulkerson, A. J. Hoffman and M. H. McAndrew 

Let G he a finite undirected graph with no edges joining a 

vertex to itself hut with possihly several edges joining pairs of vertices. 

For such a graph and for a specified integer valued function on its nodes, 

we consider two questions concerned with those subgraphs, if any, which 

have just this function for their degrees. The first question is whether 

or not any such subgraph exists. A complete answer to this was given by 

Tutte [l]j we show that under certain conditions on G a simpler set of 

conditions is both necessary and sufficient. 

The second question is whether any such subgraph can be trans- 

formed into any other by a sequence of interchanges. (By an "interchange" 

we mean the replacement of a pair of edges (ab), (cd) by the pair (ac),(bd). 

Such a transformation clearly preserves degrees.) We show that this is 

true if every cycle a,,a2,a~,...a ,a1 has a chord (a., a.  ) for some 

i. This condition is not in general necessary. However, if G is 

bipartite, the condition is equivalent to the statement that every simple 

cycle has a chord and in this case is both necessary and sufficient. This 

result includes the interchange theorem of Ryser [2] for bipartite graphs. 

[1] W. T. Tutte, "A Short Proof of the Factor Theorem for Finite Graphs", 
Canad. J. Math. 6(195*0, 3^7-352. 

[2] H. J. Ryser, "Combinatorial Properties of Matrices of Zeros and Ones", 
Canad. J. Math., Vol. 9,  (1957), 371-377« 
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Maximum Degree-Constrained Subgraphs 

Jack Edmonds 
Princeton University 

and 
National Bureau of Standards 

For a graph G with an integer capacity d. assigned to each 

vertex v., let r denote the class of subgraphs G1 of G such 

that node v  meets no more than d. edges in G*• The problem is, 

for any T and for any numerical weights attached to the edges of G, 

find in F a G  whose edge-weight sum is maximum. So far the problem 

is unusual among types of integer program in being found to have an 

algorithm which increases in difficulty only algebraically with the size 

of G. The algorithm is used to prove a theorem describing the convex 

hull of the set of 0,1-vectors associated with T. 

The final write-up is not prepared. The special case where d. » 1 

is treated in the mimeographed papers titled: (l) "Paths, trees, and 

flowers"; (2) "Maximum matching and a polyhedron with 0,1-vertices". 



THRESHOLD GAME 

! D. B. Netherwood 

Equipment: Pencil and Paper or equivalent. 

Player A picks threshold T, an integer» 

Player B starts. 

In turn, each player writes one of the following: 

a. An isloated point. 

"b. An isloated line. 

c. A new point connected by a line to a point already in the graph. 

d. A line connecting two points not previously connected ia the 

graph, not crossing any other line. 

Play continues until the degree of some point reaches T. After this, 

only option d above is allowed, and the degree of no point 

may exceed T. The player who can draw the last line is the 

winner. 

EROBIEM: Find winning strategy for A or B. 
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Problem 

R. Z. Norman 

Given a rectangular matrix of integers. Choose a set of entries 

in the matrix. A row of the matrix is said to be covered if it contains 

a chosen element or if it contains an element a. . such that some element 

a, . in the same column is chosen and a. . < a. . • Find a collection of 

elements of the matrix so that every row is covered and so that the sum of 

the chosen elements is as small as possible. 

I should like to find an efficient algorithm for solving this problem. 

I believe it would be sufficient to find an algorithm that would produce 

the sum even if it didn't produce the matrix elements, but I have forgotten 

where the problem originated. Accordingly, I propose a second problem of 

finding an interesting application of the problem. 



AN EXEREMUM EROBIEM CONCERNING HAMILTONIAN CIRCUITS 

by Fred Supnick and Louis V. Quintas 

Theorem. Let 2p-l points of the Euclidean plane fall on the boundary 

B of their convex hull. If 

Pl'?3> • • #'*2p-l'*2'*V ''' 'P2p-2 
is a cyclic ordering of these points induced by traversing B in a given 

sense, then of all polygons'having these points as vertices the polygon 

has maximum length. 

The solution of the "Convex-Even Case" for longest polygons is as 

yet unresolved. 

Problem« Let 2 points be specified on any convex curve in the 

Euclidean plane. Determine a longest polygon having exactly these points 

as vertices. 

References 

[1] F. Supnick, Extreme Hamiltonian Lines, Ann. of Math. Vol. 66 (1957) 

pp. 179 - 201 

[2] F. Supnick and L. V. Quintas, Combinatorial extrema on surfaces of 

constant curvature. (To be submitted for publication shortly.) 

[3] F. Supnick and L. V. Quintas, Extreme Hamiltonian Circuits. Resolution 

of the Convex-Odd Case. (Submitted for publication.) 

City College,wNev York. 
St. John's University, Jamaica, New York 



An Efficient and Constructive Algorithm for Testing Whether A 
Graph Can Be aribedderi in The Plane 

A. J. Goldwtein 
Bell Telephone Laboratories, Murray Hill, N. J. 

This algorithm is closely related to the work of L. Auslander and 

S. V. Porter, Jl. of Math, and Mean., Vol. 10, No. 3 (196*1). At each 

step of the algorithm we have embedded in the plane a subgraph H of 

the given graph G. H has the property that it can he extended to a 

planar embedding of G, if G is planar. H partitions the plane into 

regions which are numbered and each node of H is laheled with the regions 

it touches. The nodes and arcs of H have the designation "placed". Ike 

algorithm is inductive and is initialized by the first four steps. 

(1) First choose an arbitrary polygon (loop) H from  G and place 

H in the plane. This partitions the plane into two regions. (2) If 

two nodes of H are adjacent in  G place the arc connecting them in 

either of the two regions. We now have three regions. If none are 

adjacent go to step U. (if we think of embedding on the sphere, it 

clearly makes no difference in which region we place the arc.) (3) If 

any other pair of nodes of H are adjacent and the nodes have exactly one 

region in common, then the arc connecting them is forced to lie in that 

region and it is so placed. Repeat. Finally all adjacent nodes of H 

have two or more regions in common. Label arcs connecting such nodes as 

"ambiguous11. (Of course, if a pair of adjacent nodes of H have no 

region In common G is non-planar.) Go to step *. (4) If no pair of 

nodes of H are adjacent then choose and place any path connecting any 

pair of nodes of He  (We show in 5 how this is done.) 

The present subgraph H determines at least three regions. Steps 

5, 6 and 3 constitute the inductive portion of the algorithm. (5) Choose 

a non-placed unambiguous node v. (if none go to step 6.) Construct 

(continued) 
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any tree   T   which   (a) contains   v,    (b) is connected,    (c) has placed 

nodes only as terminal nodes of   T   and   (d) is maximal.    Let   B, the 

boundary of   T,   he the set of nodes of   T   which are placed,    (i) If   B 

is empty or has only one node then the embedding of the subgraph spanned 

by   T   can be handled as a separate problem.    Repeat step 5.    (ii) If   B 

has more than two nodes and all of them have more than one region in 

common, then we do not know in which of these regions to place the 

connected tree   T.    Label as ambiguous each non-placed node of   T.    Repeat 

step 5.    (iii)   If the nodes of   B   have exactly one region   R   in common, 

pick any path in   T   connecting any pair of nodes of   B   and place it in 

R.    (This placement is forced.)   Remove the designation ambiguous from 

all nodes and arcs.    Go to step 3«    (iv) If the nodes of   B   have no 

region in common then the graph   G   is non-planar.    (6) If all non-placed 

nodes and edges are designated ambiguous, then place any path between any 

pair of placed nodes.    The placement is made in any of the path's per- 

missible regions.    One can show that if   G   is planar, the new embedded 

graph   H   can be extended to an embedding of   G.    When all nodes and edges 

have been placed the embedding is completed. 



Program of the 
COMBINATORIAL EMBLEMS AI© GAMES SEMINAR 

Princeton University 
Department of Mathematics 
October 1962 thru March 1963 

October 1, 1962 
Speaker: Dr. V. E. Benes, Bell Telephone Labs 
Topic:   Contributions to Connecting Networks 

October 8, 1962 
Speaker: A. W. Tucker 
Topic:   Combinatorial analysis of games and programs 

October 15, 1962 
Speaker: Michael Maschler, Econometric Research Program 
Topic:   Existence theorems for cooperative games 

October 22, 1962 
Speaker: Karl Borch, Econometric Research Program 
Topic:   Some game theoretical problems in insurance 

October 29, 1962 
Speaker: Jack Edmonds 
Topic:   Minimum covering 

November 5, 19o2 
Speaker: C. B. Tompkins, IDA 
Topic:   Tabulation of a probability function connected vith sequences 

of binary digits. 

November 12, 1962 
Speaker: E. J. McClusky 
Topic:   Quadratic integer programming 

November 19, 19&2 
Speaker: Christoph Witzgall, National Bureau of Standards 
Topic:   Quadratic integer programming 

November 26, 1962 
Speaker: D. K. Ray-Chandhuri, IBM 
Topic:   Error correcting cedes 

December 3, 1962 
Speaker: F. W. Sinden, Bell Labs 
Topic:   Convex programming in protective space 

December 1,  19&2 
Speaker: H. J. Ryser, Syracuse University 
Topic:   Combinatorial Designs 

(continued) 
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December 10, 1962 
Speaker:   H. J. Ryser, Syracuse University 
Topic:   Matrices of zeros and ones 

December VJ,  I962 
Speaker: L. H. Welch, IDA 
Topic:   Onto mappings of (0,1) sequences 

February 11, 1963 
Speaker: Harold Kuhn 
Topic:   An algorithm for the generalized Steiner porblem 

February 18, 19^3 
Speaker: Dr. Alan J. Hoffman, IBM 
Topic:   Sections of Ovaloids 

February 25, I963 
Speaker: Dr. William Blankenship, National Security Agency 
Topic:   Linear Recursive Binary Sequences 

March 2*, I963 
Speaker: Dr. E. F. Whittlesey 
Topic:   The classification of 2-dimensional complexes 

March 11, 1963 
Speaker: Dr. Harlan Mills, R. C. A. 
Topic:   The Analysis of round-off errors in digital computation 

March 18, I963 
Speaker: Dr. Robert Taylor, Union Carbide 
Topic:   The convex transportation problem 

March 25, 1963 
Speaker: Dr. Morris Nevman, National Bureau of Standards 
Topic:   The normal congruence subgroups of the raodular group 

April 15, 1963 
Speaker: A. W. Tucker 
Topic:   Principal Pivotal transforms of square matrices 

April 22, 1963 
Speaker: James Griesmer, I. B. M. 
Topic:   Symnetric Bi-matrix Games 

May 6, 1963 
Speaker: Jack Edmonds 
Topic:   Non-disconnecting circuits in a 3-connected graph 


